EXTENSION OF COLLATZ CONJECTURE AND A PROOF OF COLLATZ-1 CONJECTURE AND FALSIFICATION OF COLLATZ-5 AND COLLATZ-181 CONJECTURES

CHUIJIE WU

ABSTRACT. The *Collatz conjecture* is extended into *Collatz-M conjecture*, and a proof of *Collatz-1 conjecture* and falsification of *Collatz-5 and Collatz-181 conjecturesis* are given in this paper.

1. INTRODUCTION OF THE COLLATZ CONJECTURE

Quote from [1], "Let $\mathbb{N} := \{0, 1, 2, ...\}$ denote the natural numbers, so that $\mathbb{N} + 1 = \{1, 2, 3, ...\}$ are the positive integers. The *Collatz map* Col: $\mathbb{N} + 1 \to \mathbb{N} + 1$ is defined by setting $\operatorname{Col}(N) := 3N + 1$ when N is odd and $\operatorname{Col}(N) := N/2$ when N is even. For any $N \in \mathbb{N} + 1$, let $\operatorname{Col}_{\min}(N) := \min \operatorname{Col}^{\mathbb{N}}(N) = \inf_{n \in \mathbb{N}} \operatorname{Col}^n(N)$ denote the minimal element of the Collatz orbit $\operatorname{Col}^{\mathbb{N}}(N) := \{N, \operatorname{Col}(N), \operatorname{Col}^2(N), \ldots\}$. We have the infamous *Collatz conjecture* (also known as the 3x + 1 conjecture):

Conjecture 1.1 (Collatz conjecture). We have $\operatorname{Col}_{\min}(N) = 1$ for all $N \in \mathbb{N} + 1$."

2. Extension of Collatz conjecture–Collatz-M conjecture

The Collatz conjecture can be extended to the *Collatz-M conjecture*, as follows.

Let $\mathbb{N} \coloneqq \{0, 1, 2, ...\}$ denote the natural numbers, so that $\mathbb{N} + 1 = \{1, 2, 3, ...\}$ are the positive integers. The *Collatz-M map*, where *M* is odd and $M \in \mathbb{N} + 1$, $\operatorname{Col}_M : \mathbb{N} + 1 \to \mathbb{N} + 1$ is defined by setting $\operatorname{Col}_M(N) \coloneqq MN + 1$ when *N* is odd, and $\operatorname{Col}_M(N) \coloneqq N/2$ when *N* is even. For any $N \in \mathbb{N} + 1$, let $\operatorname{Col}_{M_{\min}}(N) \coloneqq$ $\min \operatorname{Col}_M^{\mathbb{N}}(N) = \inf_{n \in \mathbb{N}} \operatorname{Col}_M^n(N)$ denote the minimal element of the Collatz-*M* orbit $\operatorname{Col}_M^{\mathbb{N}}(N) \coloneqq \{N, \operatorname{Col}_M(N), \operatorname{Col}_M^2(N), \ldots\}$. We have the *Collatz-M conjecture*:

Conjecture 2.1 (Collatz-*M* conjecture). $\operatorname{Col}_{M_{\min}}(N) = 1$, where *M* is odd and $M \in \mathbb{N} + 1$, for all $N \in \mathbb{N} + 1$.

Therefore, from **Conjecture 2.1**, the *Collatz conjecture* is the *Collatz-3 conjecture*.

¹⁹⁹¹ Mathematics Subject Classification. 37P99.

CHUIJIE WU

3. Proof of Collatz-1 conjecture

From **Conjecture 2.1**, when M = 1, we have $\operatorname{Col}_1(N) \coloneqq N + 1$ when N is odd, and $\operatorname{Col}_1(N) \coloneqq N/2$ when N is even. Therefore we have

Conjecture 3.1 (Collatz-1 conjecture). $\operatorname{Col}_{1_{\min}}(N) = 1$ for all $N \in \mathbb{N} + 1$.

Proof. All integers can be devided into two groups: odd integers and even integers, and an odd integer +1 is an even integer.

Even integers can be divided into two groups: power of 2 integers and not power of 2 even integers.

Case 1 For even integers N which are power of 2, since $\operatorname{Col}_0(N) := N/2$, let $N = 2^k, k \ge 1, k \in \mathbb{N}$, then after k mappings, we arrive the minimal element of Collatz-1 orbit, i.e., $\operatorname{Col}_{1_{\min}}(N) = 1$ for all power of 2 integers $N \in \mathbb{N} + 1$.

Case 2 For even integers N which are not power of 2, since $\operatorname{Col}_1(N) \coloneqq N/2$, let $N = 2^l G, l \ge 1, l \in \mathbb{N}, G \in \mathbb{N} + 1$ and G is odd. After l mappings, we get $\operatorname{Col}_1(N) = G$, then $\operatorname{Col}_1(G) \coloneqq G + 1$. Let G = 2Y + 1 and Y is odd, then $\operatorname{Col}_1(G + 1) = Y + 1$.

If $Y + 1 = 2^n H$, $n \ge 1$, $n \in \mathbb{N}$, H is odd, it returns to **Case 2**;

If $Y + 1 = 2^m, m \ge 1, m \in \mathbb{N}$, according to **Case 1**, we have $\operatorname{Col}_{1_{\min}}(N) = 1$.

Therefore, $\operatorname{Col}_{1_{\min}}(N) = 1$ for all even $N \in \mathbb{N} + 1$.

Case 3 For odd integers N, N + 1 are even integers. Therefore from **Case 1** and **Case 2**, we can arrive the finial result:

 $\operatorname{Col}_{1_{\min}}(N) = 1$ for all $N \in \mathbb{N} + 1$.

It is noticed that the results of *Collatz-1 map* are in general almost monotonic descent (for N is odd, $\operatorname{Col}_M(N) \coloneqq N+1$), which makes the *Collatz-1 conjecture* provable.

4. Falsification of Collatz-5 and Collatz-181 conjectures

For M = 5, N = 5, it exists a periodic orbit which dose not include 1, i.e., 26, 13, 66, 33, 166, 83, 416, 208, 104, 52, 26

and for M = 181, N = 27, it exists a periodic orbit which dose not include 1, i.e., 27, 4888, 2444, 1222, 611, 110592, 55296, 27648, 13824, 6912, 3456, 1728, 864,

432, 216, 108, 54, 27

EXTENSION OF COLLATZ CONJECTURE

Therefore the *Collatz-5 conjecture* and the *Collatz-181 conjecture* are false.

References

 T. Tao, Almost all orbits of the Collatz map attain almost bounded values, arXiv: 1909.03562v2 [math.PR] 13 Sept. 2019.

School of Aeronautics and Astronautics, Dalian University of Technology, Dalian, China, 116024.

E-mail address: cjwudut@dlut.edu.cn